Skip to main content

Advertisement

Log in

Validation of Poly(Propylene Imine) Glycodendrimers Towards Their Anti-prion Conversion Efficiency

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prion diseases, such as the sporadic Creutzfeldt–Jakob disease (sCJD), are a class of fatal neurodegenerative disorders. Currently, there is no efficient treatment or therapy available. Hence, the search for molecules that may inhibit the conversion of the cellular prion protein (PrPC) into its pathological counterpart PrPScrapie (PrPSc) is of great urgency. Here, we report the generation- and dose-dependent biological action of dense-shell poly(propylene imine) (PPI) glycodendrimers by using scrapie-infected neuroblastoma (ScN2a) cells and the real-time quaking-induced conversion assay (RT-QuIC) for validation of anti-prion efficiencies. Whereas the 2nd and 3rd generation of PPI glycodendrimers exhibited anti-prion conversion efficiency in ScN2a cells validated by RT-QuIC analysis, we observed that the 4th generation of glycodendrimers had shown no significant effect. Translational RT-QuIC studies conducted with human prions derived from sCJD patients indicated an anti-prion conversion effect (not on PrPRes degradation) of PPI glycodendrimers against human prions with the highest inhibitory activity of the 4th generation of PPI glycodendrimers towards prion aggregation compared to the 2nd and 3rd generation. In conclusion, our study highlights the potential of PPI glycodendrimers as therapeutic compounds due to their anti-conversion activity on human prions in a PrPSc strain depending manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CJD:

Creutzfeldt-Jakob disease

sCJD:

sporadic CJD

CSF:

Cerebrospinal fluid

PrPC :

cellular prion protein

PrPRes :

PrP resistant

PrPSc :

PrPScrapie

RT-QuIC:

real-time quaking-induced conversion

rfu:

Relative fluorescence units

ScN2a:

Scrapie-infected neuroblastoma

PPI:

poly-propylene imine

References

  1. Schneider K, Fangerau H, Michaelsen B, Raab WH (2008) The early history of the transmissible spongiform encephalopathies exemplified by scrapie. Brain Res Bull 77(6):343–355

    Article  Google Scholar 

  2. Takada LT, Kim MO, Cleveland RW, Wong K, Forner SA, Gala II, Fong JC, Geschwind MD (2017) Genetic prion disease: Experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 174(1):36–69

    Article  Google Scholar 

  3. Bonda DJ, Manjila S, Mehndiratta P, Khan F, Miller BR, Onwuzulike K, Puoti G, Cohen ML et al (2016) Human prion diseases: surgical lessons learned from iatrogenic prion transmission. Neurosurg Focus 41(1):E10

    Article  Google Scholar 

  4. Gambetti P, Parchi P, Chen SG (2003) Hereditary Creutzfeldt-Jakob disease and fatal familial insomnia. Clin Lab Med 23(1):43–64

    Article  Google Scholar 

  5. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  CAS  Google Scholar 

  6. Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, Matsubara T, Nakagaki T et al (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17(2):175–178

    Article  CAS  Google Scholar 

  7. McGuire LI, Peden AH, Orrú CD, Wilham JM, Appleford NE, Mallinson G, Andrews M, Head MW et al (2012) Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 72(2):278–285

    Article  Google Scholar 

  8. Sano K, Satoh K, Atarashi R, Takashima H, Iwasaki Y, Yoshida M, Sanjo N, Murai H et al (2013) Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay. PLoS One 8(1):e54915

    Article  CAS  Google Scholar 

  9. Cramm M, Schmitz M, Karch A, Mitrova E, Kuhn F, Schroeder B, Raeber A, Varges D et al (2016) Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt-Jakob disease. Mol Neurobiol 53(3):1896–1904

    Article  CAS  Google Scholar 

  10. Schmitz M, Cramm M, Llorens F, Müller-Cramm D, Collins S, Atarashi R, Satoh K, Orrú CD et al (2016) The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc 11(11):2233–2242

    Article  CAS  Google Scholar 

  11. Schmitz M, Candelise N, Llorens F, Zerr I (2018) Amplification and detection of minuscule amounts of misfolded prion protein by using the real-time quaking-induced conversion. Methods Mol Biol 1779:257–263

    Article  CAS  Google Scholar 

  12. Schmitz M, Cramm M, Llorens F, Candelise N, Müller-Cramm D, Varges D, Schulz-Schaeffer WJ, Zafar S et al (2016) Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie. Sci Rep 6:28711

    Article  Google Scholar 

  13. Candelise N, Schmitz M, Da Silva Correia SM, Arora AS, Villar-Piqué A, Zafar S, Llorens F, Cramm M et al (2017) Applications of the real-time quaking-induced conversion assay in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies. Expert Rev Mol Diagn 17(10):897–904

    Article  CAS  Google Scholar 

  14. Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U, Breithaupt M, Varges D et al (2009) Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 132(Pt 10):26592668

    Google Scholar 

  15. Zerr I (2009) Therapeutic trials in human transmissible spongiform encephalo-pathies: recent advances and problems to address. Infect Disord Drug Targets 9(1):92–99

    Article  CAS  Google Scholar 

  16. Fischer M, Appelhans D, Klajnert B, Bryszewska M, Voit B, Rogers M (2010) The influence of surface functionality of poly(propylene imine) dendrimers on aggregation and propagation of the scrapie prion protein. Biomacromolecules 11(5):1314–1325

    Article  CAS  Google Scholar 

  17. McCarthy JM, Rasines B, Appelhans D, Rogers M (2012) Differentiating prion strains using dendrimers. Adv Healthcare Mater 1(6):768–772

    Article  CAS  Google Scholar 

  18. McCarthy JM, Rasines B, Filippini D, Komber H, Maly M, Cernescu M, Brutschy B, Appelhans D et al (2013) Influence of surface groups on poly(propylene imine) dendrimers anti-prion activity. Biomacromolecules 14(1):27–37

    Article  CAS  Google Scholar 

  19. McCarthy JM, Franke M, Resenberger UK, Waldron S, Simpson JC, Tatzelt J, Appelhans D, Rogers M (2013) Anti-prion drug mPPIg5 inhibits PrPC conversion to PrPSc. PLoS One 8(1):e55282

    Article  CAS  Google Scholar 

  20. McCarthy JM, Appelhans D, Rogers M (2013) Nanomedicine for prion disease treatment: new insights into the role of dendrimers. Prion 7(3):198–202

    Article  CAS  Google Scholar 

  21. Appelhans D, Cladera J, Rogers M, Voit B (2015) Dendritic glyco architectures - from H-bond-driven molecular interactions to their potential use in brain disease therapy. In: Becer CR, Hartmann L (eds) Glycopolymer Code: Synthesis of Glycopolymers and Their Applications, vol Chapter 5. Royal Society of Chemistry, pp. 149–177

  22. Janaszewska A, Klajnert-Maculewicz B, Marcinkowska M, Duchnowicz P, Appelhans D, Grasso G, Deriu MA, Danani A et al (2018) Multivalent interacting glycodendrimer to prevent amyloid-peptide fibril formation induced by Cu(II): a multidisciplinary approach. Nano Res 11(3):1204–1226

    Article  CAS  Google Scholar 

  23. Aso E, Marinsson I, Appelhans D, Benseny-Cases N, Effenberg C, Cladera J, Gouras G, Ferrer I, Klementieva O (2019) Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine: NBM 17:198-209

  24. Klajnert B, Appelhans D, Komber H, Morgner N, Schwarz S, Richter S, Brutschy B, Ionov M et al (2008) The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: New effects dependent on Hydrogen bonding. Chemistry 14(23):7030–7041

    Article  CAS  Google Scholar 

  25. Klementieva O, Benseny-Cases N, Gella A, Appelhans D, Voit B, Cladera J (2011) Dense shell glycodendrimers as potential non-toxic anti-amyloidogenic agents in Alzheimer’s Disease. Amyloid-dendrimer aggregates morphology and cell toxicity. Biomacromolecules 12(11):3903–3909

    Article  CAS  Google Scholar 

  26. Janaszewska A, Ziemba B, Ciepluch K, Appelhans D, Voit B, Klajnert B, Bryszewska M (2012) The biodistribution of maltotriose modified poly(propylene imine) (PPI) dendrimers conjugated with fluoroscein-proofs of crossing blood-brain-barrier. J Biomed Mater Res A 99(2):261–268

    Google Scholar 

  27. Ziemba B, Janaszewska A, Ciepluch K, Krotewicz M, Fogel WA, Appelhans D, Voit B, Bryszewska M et al (2011) In vivo toxicity of poly(propyleneimine) dendrimers. J Biomed Mater Res A 99(2):261–268

    Article  Google Scholar 

  28. Janaszewska A, Mączyńska K, Matuszko G, Appelhans D, Voit BKB, Bryszewska M (2012) Cytotoxicity of PAMAM, PPI and maltose modified PPI dendrimers in Chinese hamster ovary (CHO) and human ovarian carcinoma (SKOV3) cells. New J Chem 36:428–437

    Article  CAS  Google Scholar 

  29. Ziemba B, Halets I, Shcharbin D, Appelhans D, Voit B, Pieszynski I, Bryszewska M, Klajnert B (2012) Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. J Biomed Mater Res A100(11):2870–2880

    Article  Google Scholar 

  30. Janaszewska A, Ziemba B, Ciepluch K, Appelhans D, Voit B, Klajnert B, Bryszewska M (2012) The biodistribution of maltotriose modified poly(propylene imine) (PPI) dendrimers conjugated with fluoroscein-proofs of crossing blood-brain-barrier. New J Chem 36:350–353

    Article  CAS  Google Scholar 

  31. Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B (2015) Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 44(12):3968–3996

    Article  CAS  Google Scholar 

  32. Tomalia DA, Rookmaker M (2009) Poly (Propylene Imine) Dendrimers. Polymer Data Handbook. Oxford University Press, New York

    Google Scholar 

  33. Nishida N, Harris DA, Vilette D, Laude H, Frobert Y, Grassi J, Casanova D, Milhavet O et al (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74(1):320–325

    Article  CAS  Google Scholar 

  34. Bone I, Belton L, Walker AS, Darbyshire J (2008) Intraventricular pentosan polysulphate in human prion diseases: an observational study in the UK. Eur J Neurol 15(5):458–464

    Article  CAS  Google Scholar 

  35. De Luigi A, Colombo L, Diomede L, Capobianco R, Mangieri M, Miccolo C, Limido L, Forloni G et al (2008) The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One 3(3):e1888

    Article  Google Scholar 

  36. Tsuboi Y, Doh-Ura K, Yamada T (2009) Continuous intraventricular infusion of pentosan polysulfate: clinical trial against prion diseases. Neuropathology 29(5):632–636

    Article  Google Scholar 

  37. Collins SJ, Lewis V, Brazier M, Hill AF, Fletcher A, Masters CL (2002) Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann Neuol 52(4):503–506

    Article  CAS  Google Scholar 

  38. Geschwind MD, Kuo AL, Wong KS, Haman A, Devereux G, Raudabaugh BJ, Johnson DY, Torres-Chae CC et al (2013) Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 81(23):2015–2023

    Article  CAS  Google Scholar 

  39. Moon JH, Lee JH, Park JY, Kim SW, Lee YJ, Kang SJ, Seol JW, Ahn DC et al (2014) Caffeine prevents human prion protein-mediated neurotoxicity through the induction of autophagy. Int J Mol Med 34(2):553–558

    Article  CAS  Google Scholar 

  40. Haïk S, Marcon G, Mallet A, Tettamanti M, Welaratne A, Giaccone G, Azimi S, Pietrini V et al (2014) Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13(2):150–158

    Article  Google Scholar 

  41. Ngoungoure VL, Schluesener J, Moundipa PF, Schluesener H (2015) Natural polyphenols binding to amyloid: a broad class of compounds to treat different human amyloid diseases. Mol Nutr Food Res 59(1):8–20

    Article  CAS  Google Scholar 

  42. Varges D, Manthey H, Heinemann U, Ponto C, Schmitz M, Schulz-Schaeffer WJ, Krasnianski A, Breithaupt M et al (2017) Doxycycline in early CJD: a double-blinded randomised phase II and observational study. J Neurol Neurosurg Psychiatry 88(2):119–125

    Article  Google Scholar 

Download references

Funding

The project was supported by the German Academic Exchange Service (DAAD) project 57421248, by the Alzheimer Forschung Initiative (AFI) project 17022 and the Instituto Carlos III (Miguel Servet programme—CP16/00041).

Author information

Authors and Affiliations

Authors

Contributions

MS designed and supervised the study; MS, NC, KT performed experiments; MS, NC, IZ wrote the manuscript; MS, NC, IZ, EK, FL, DA analyzed data; EK, FL, KT, AVP SC, DD, TS, DA critically reviewed the manuscript; EK, TS, DA provide material.

Corresponding author

Correspondence to Matthias Schmitz.

Ethics declarations

Competing Interests

The authors declare that they have not competing interests

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Matthias Schmitz and Niccolo Candelise contributed equally to this work

Electronic supplementary material

Supplementary Fig. 1

PrPResamount is reduced after G2-Mal and G3-Mal glycodendrimer treatment. ScN2a cells were treated with G2- and G3-Mal glycodendrimers (0.5and 1.0 mM) for three days. Cell lysates were subjected to PK digestion and Western blot analysis. (PNG 432 kb)

High Resolution Image (TIF 2379 kb)

Supplementary Fig. 2

Control -seeded reactions are not affected by G2-4-Mal glycodendrimer treatment. (A, B) RT-QuIC reactions were seeded with CSF from control patients (n = 5). After 80 h, G2-4-Mal glycodendrimers (1 mM) were added directly into the RT-QuIC reaction (marked by an arrow) and the analysis was restarted. Calculation of AUC values revealed no significant effects. (PNG 114 kb)

High Resolution Image (TIF 6261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, M., Candelise, N., Kanata, E. et al. Validation of Poly(Propylene Imine) Glycodendrimers Towards Their Anti-prion Conversion Efficiency. Mol Neurobiol 57, 1863–1874 (2020). https://doi.org/10.1007/s12035-019-01837-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01837-w

Keywords

Navigation